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Defining priority areas 
for blue whale conservation 
and investigating overlap 
with vessel traffic in Chilean 
Patagonia, using a fast‑fitting 
movement model
Luis Bedriñana‑Romano1,2*, Rodrigo Hucke‑Gaete1,2*, Francisco A. Viddi1,2, Devin Johnson3, 
Alexandre N. Zerbini3,4,5,6, Juan Morales7, Bruce Mate8 & Daniel M. Palacios8

Defining priority areas and risk evaluation is of utmost relevance for endangered species` 
conservation. For the blue whale (Balaenoptera musculus), we aim to assess environmental habitat 
selection drivers, priority areas for conservation and overlap with vessel traffic off northern Chilean 
Patagonia (NCP). For this, we implemented a single‑step continuous‑time correlated‑random‑walk 
model which accommodates observational error and movement parameters variation in relation to 
oceanographic variables. Spatially explicit predictions of whales’ behavioral responses were combined 
with density predictions from previous species distribution models (SDM) and vessel tracking data 
to estimate the relative probability of vessels encountering whales and identifying areas where 
interaction is likely to occur. These estimations were conducted independently for the aquaculture, 
transport, artisanal fishery, and industrial fishery fleets operating in NCP. Blue whale movement 
patterns strongly agreed with SDM results, reinforcing our knowledge regarding oceanographic 
habitat selection drivers. By combining movement and density modeling approaches we provide a 
stronger support for purported priority areas for blue whale conservation and how they overlap with 
the main vessel traffic corridor in the NCP. The aquaculture fleet was one order of magnitude larger 
than any other fleet, indicating it could play a decisive role in modulating potential negative vessel‑
whale interactions within NCP.

Animal movement integrates several scales of ecological phenomena, including individual physiological state, 
locomotive, and navigational capabilities, and how these interact with external (environmental) factors affecting 
prey distribution. This has been explicitly acknowledged by theoretical approaches that place movement into a 
wider ecological and evolutionary  framework1–3. Coupled with this growth in movement ecological theory, the 
rapid increase in animal tracking technology has allowed researchers to expand the frontiers of the questions 
that can be  answered4,5. It is not surprising then, that movement approaches are being increasingly used as an 
ecological tool for informing conservation and management  actions6–8. In fulfilling this goal, telemetry data have 
become particularly useful for oceanic species with wide-ranging life histories, for which other more traditional 
monitoring approaches are logistically  challenging9.
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For the endangered Eastern South Pacific (ESP) blue whale (Balaenoptera musculus) population, northern 
Chilean Patagonia (NCP) is regarded as its most important summer foraging and nursing  ground10–12. Previous 
studies on blue whale occurrence and movement patterns indicated that until the onset of austral autumn/winter 
migration, blue whales focus most of their activities within these productive coastal  waters12–15. However, vari-
ations in how this population utilizes this region and other areas within the ESP appear to result from changes 
in prevailing oceanographic  conditions16.

Species distribution models (SDM) have shown that austral spring chlorophyll-a concentration, prior to 
the whales’ arrival, and thermal fronts are important oceanographic proxies for describing the abundance and 
distribution patterns of blue whales within the  NCP16. Krill, the primary prey of blue  whales17, can take advan-
tage of seasonally enhanced productivity for biomass production, with some time lag linking early life-history 
stages (e.g. larval recruitment) with adult  densities17–21. Adult krill biomass is subsequently concentrated by 
thermal fronts into high-density patches which blue whales prey  upon22–25. This prey aggregation effect driven 
by thermal fronts could be critical for blue whales, and other large baleen whales, given their energetically costly 
feeding  behavior26–29. We hypothesize that both time-lagged distribution of primary productivity and thermal 
front aggregating effect generates foraging conditions for blue whales within NCP. To further test predictions 
from this hypothesis, here we propose that individual blue whales modify their behavior within areas of high 
spring chlorophyll-a concentrations and/or thermal front occurrence. As foraging behavior cannot be directly 
assessed solely by inspecting tracking data, we consider area-restricted search behavior (ARS, lower velocity and 
less directional persistence) as a proxy for this type of  behavior30,31.

Potential local threats affecting blue whales in NCP include collisions with vessels due to intense maritime 
 traffic16,32, negative interactions with aquaculture and fisheries  activities33–35, direct and indirect effects from 
poorly regulated whale-watching  operations36, and general disturbance from noise and acoustic  pollution37. As 
such, identifying priority areas for focusing conservation actions is of utmost relevance considering a population 
numbering the low hundreds with a very low potential biological removal from anthropogenic origin estimated 
at 1 individual every 1.8 years16 for continued growth.

Vessel collisions with cetaceans have become recognized worldwide as a significant source of anthropogenic 
mortality and serious  injuries38–41. Empirical work on this issue has been conducted in a few areas and popula-
tions, mostly in the northern  Hemisphere32,39,42,43, with little effort conducted in South  America32,44. In most 
countries, unreported cases, limited monitoring and insufficiently documented incidents have precluded any 
accurate assessment of the true collision prevalence and trend  analyses32.

Given the earlier results from SDMs, we considered using telemetry data as a complementary tool for improv-
ing our understanding of blue whale habitat selection  process16,17,45 and investigating overlap with vessel traffic 
in NCP. In fulfilling these goals, here we provide: i) a novel fast-fitting model application for data gathered from 
satellite-monitored Argos tags (hereafter Argos tags), ii) model-derived spatial predictions of how whales use 
the area based on prevailing oceanographic conditions during the tracking period, iii) spatial estimates on the 
relative probability of encountering blue whales, based on the integration of movement model predictions with 
those of a previous SDM, and iv) spatial estimates on the relative probability of whales encountering vessels as 
a measure of risk for four different vessel fleets operating in NCP.

Methods
Study area. The NCP (41–47°S) is characterized by an intricate array of inner passages, archipelagos, chan-
nels, and fjords enclosing roughly 12,000 km of convoluted and protected shoreline (Fig. 1). Primary biological 
productivity here is modulated by the mixing of sub-Antarctic waters, rich in macro-nutrients, and the abundant 
input of freshwater (derived from river discharges, heavy precipitation and glacier/snow melt), rich in micro-
nutrients, particularly  silica46–48. Within the NCP, several micro-basins have been described, some of them hav-
ing particularly high seasonal primary and secondary  production46–50, providing resources that upper-trophic 
level species rely  on12,17,50–54. The area also hosts one of the largest salmon aquaculture industries in the world, 
among other anthropogenic activities that negatively affects local  biodiversity33,34,55.

Tagging and telemetry data. Argos tags were deployed on 15 blue whales during the austral summer 
and early autumn at their summering grounds off the NCP (Fig. 1), following procedures described  elsewhere14. 
Briefly, whales were tagged in waters of Corcovado Gulf during February 2004 (n = 4), and the Chiloe Inner Sea 
during late March and early April 2013 (n = 2), 2015 (n = 3), 2016 (n = 2) and 2019 (n = 4). Tags were deployed 
using a custom-modified compressed-air line-thrower (ARTS/RN, Restech  Norway56) set at pressures ranging 
between 10 and 14 bar. Several models of custom-designed fully implantable satellite tags were used, including: 
ST-15 [n = 4], manufactured by Telonics (Mesa, Arizona, USA), SPOT5 [n = 3], SPOT6 [n = 4], and MK10 [n = 4], 
manufactured by Wildlife Computers (Redmond, Washington, USA).

Raw Argos data included locations within NCP and outside the area after the onset of migratory movement. 
Because we were concerned with understanding movement patterns within the NCP, we applied a cut-off point 
of 24 h prior to a clear sign of migration was observed. This subset of the data was filtered using the R package 
“argosfilter”57 removing relocations that comprised velocities exceeding 3 m s−1, this upper limit was defined 
based on previous maximum speed assessments for this  population14.

Oceanographic covariates. Chlorophyll-a and sea surface temperature (SST) data were extracted using R 
package “rerddapXtracto”58, which accesses the ERDDAP server at the NOAA/SWFSC Environmental Research 
Division. Chlorophyll-a data corresponded to satellite level-3 images from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor onboard the Aqua satellite (Dataset ID: erdMH1chlamday), corresponding 
to monthly averages in a grid size of 4.64 × 4.64 km. Distance to areas of high chlorophyll-a concentration during 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2709  | https://doi.org/10.1038/s41598-021-82220-5

www.nature.com/scientificreports/

spring (DAHCC), defined as the distance to polygons enclosing areas with an average chlorophyll-a concentra-
tion equal or higher than 5 mg/m3 during austral spring months (September, October, November), was the best 
explanatory variable in a SDM applied to line-transect survey data for blue whales in  NCP16. Here we used the 
same procedure to construct this covariate but used the  95th percentile of each year´s concentrations distribu-
tion within the study area as the cut-off point for defining areas of high chlorophyll-a concentration. This was 
preferred because whales might select areas with the highest productivity regardless of their absolute values. 
Maps for DAHCC were created for each year where telemetry data were available, and their values were log 
transformed to reduce data overdispersion before their use in the models.

For SST, data corresponded to daily averages of level-4 satellite images derived from the Multi-Scale Ultra-
High Resolution (MUR) SST Analysis database (Dataset ID: jplMURSST41). MUR-SST maps merge data from 
different satellites, combined with in-situ measurements, using the Multi-Resolution Variational Analysis sta-
tistical  interpolation59, in a grid size of 0.01 × 0.01 degrees (ca. 1  km2). From MUR-SST maps, thermal gradients 
maps were generated for each day that whale locations were available using the R package “grec” v. 1.3.060 with the 
Contextual Median Filter  algorithm61 as the method for calculating gradients. MUR-SST and thermal gradients 
maps were used to extract the associated covariate values for each whale location.

Vessel traffic data. To characterize vessel traffic patterns in the area, daily vessel tracking information 
(time-stamped GPS locations for individualized vessels) was obtained from the Chilean National Fisheries and 
Aquaculture Service (SERNAPESCA), available at www.serna pesca .cl. This database was released by the Chilean 
government during 2020 and comprises data involving the industrial and artisanal fisheries, aquaculture, and 
transport fleets, from March 2019 to present (updated daily). According to Chilean legislation it is mandatory for 
these fleets to provide tracking information to SERNAPESCA, except for artisanal fishing vessels smaller than 
15 m and also for those smaller than 12 m in the case of artisanal purse seiners (www.bcn.cl). Artisanal fishing 
fleet comprises vessels up to 18 m in length and less than 80 cubic meters of storage capacity; above these metrics 
fishing vessels are considered part of the industrial fishing fleet. The transport fleet comprises vessels with no size 
limitations, engaged solely in the transportation of fishery resources. The aquaculture fleet is the most diverse 

Figure 1.  Map of the Chilean Northern Patagonia depicting relevant geographical landmarks, tagging locations 
and the year of each deployment. Maps were created in R ver. 4.0.2 (https ://www.r-proje ct.org) and ensembled 
in QGIS ver. 3.8.0 (https ://www.qgis.org) for final rendering. Maps were created using data on bedrock 
topography from the National Centers for Environmental Information (https ://maps.ngdc.noaa.gov/viewe rs/
grid-extra ct/index .html). Values above 0 were considered land coverage.

http://www.sernapesca.cl
http://www.bcn.cl
https://www.r-project.org
https://www.qgis.org
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
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one, considering its different operations (e.g. staff commuting, live and processed resource transportation, and 
supplies and infrastructure movement) with vessel sizes ranging from 5 to 100 m.

All procedures described next were conducted independently for each fleet during data analyses. We used an 
8 × 8 km grid to calculate vessel density  (VDi) for each grid-cell i. Vessel data are provided daily, with data gaps 
occurring for some days. Therefore,  VDi was calculated by summing the daily number of unique vessels cross-
ing each grid-cell i in a month divided by the total number of days with available data (range: 25–31 days). This 
procedure was conducted for austral summer and austral autumn months (March-June of 2019 and January-June 
of 2020) and then averaged into a single layer. Potential large differences in traffic patterns between these months 
were visually inspected through plots, which can be found as Supplementary Figures S1–S4 online. Data from 
austral winter and austral spring months were not used as most of the blue whale population is absent from the 
study area during these  months13,14.

Modeling approach. Telemetry data analysis has motivated the development and increasing use of various 
state-space modeling (SSM) approaches, which deal with path reconstruction and complex latent behavioral 
 states30,31,62,63. Most practical applications of SSM, however, are computationally intensive and therefore require a 
long time for fitting them. Recently, SSM has been implemented via Template Model Builder (TMB), a R package 
that relies on the Laplace approximation combined with automatic differentiation to fast-fit models with latent 
 variables64–66. Based on “TMB” tools, we fitted a continuous-time correlated-random-walk model (CTCRW) 
which estimates two state variables, velocity and true locations from error-prone observed locations, and two 
parameters, β controlling autocorrelation in directionality and velocity and σ controlling the overall variability 
in  velocity62. Variances for modelling error in locations were derived from the Argos error  ellipse67. As the error 
ellipses data were not available for tags deployed in 2004, we calculated the mean error ellipse for all location 
classes in the newer tags (2013–2019) and assigned these values to the corresponding location classes for tags 
deployed in 2004.

The original version of this model (with no behavioral variation) was fitted to obtain estimates of the true 
locations in whale’s paths and used these to extract the corresponding covariate values from DAHCC, SST and 
thermal gradients rasters. The mean of the covariate values within a 3 km radius from each estimated location 
was used to partially account for uncertainty in covariate data arising from observation error. This error radius 
corresponded to twice the known error for Argos location classes 3, 2 and  167. Covariate data were standard-
ized, and missing values were filled with zeros, which correspond to the mean in standardized variables. This 
only affected 6 whales (ID#s 1,6,7,10,11 and 12), it was restricted to SST and thermal gradient data, and except 
for one whale never exceeded more than 2.7% of the data (with ID#7 at 10.4% of the data). We modified the 
original version of the CTCRW by allowing βtand σtto be random variables that vary in time as a function of 
environmental covariates.

where B0 and A0 are intercepts, A and B are vectors of slopes, Xt is the corresponding design matrix holding the 
standardized covariates, and ε1 and ε2 correspond to standard deviations. In every case, the estimated standard 
deviation ε2 for βt was extremely small and presented exceptionally large standard errors; therefore, instead of 
trying to estimate this parameter, we fixed it at 0.01. In cases where no covariate presented a significant effect 
on βt this variable was reduced to a single parameter β, which was estimated. Estimated values of β larger than 4 
produce persistence values lower than 0.05 h, indicating that at very short time differences velocity and location 
are poorly correlated with previous values. Therefore, in cases where model estimates for β were higher than 4 
(ID#s 5 and 10) β was fixed at 4 indicating overall poorly autocorrelated movement patterns.

Our modelling approach allowed us to quantify the influence of environmental covariates on βt and σt , with 
higher values of σt indicating higher velocities and higher values of βt indicating lower directional persistence, 
which might be expressed as pt = 3/βt in units of  time62. As no discrete behavioral states were explicitly included 
in our model, we defined behavioral states as post hoc categories based on pt and σtvalues and their medians. 
The expected ARS state (slower and less persistent movement) was defined for locations jointly holding values 
of pt and σtbelow their medians and the opposite was defined as transit state. The other two logical combinations 
(high pt with low σt and low pt with high σt) were also provided and their interpretation is further discussed below. 
We also calculated νt =

√
π∗σt√
βt∗2

 , which corresponds to long-term  velocity68. This variable is a function of both 
σtand βt(or pt), and hence higher νt can be obtained by either increasing σtor reducing βt. As νt is a function of 
both σt and βt, we considered it as a proxy for the ARS-transit continuum, with higher values of νtrepresenting 
more transit-like behavior. Expected responses of νtto covariate variation were inspected through prediction 
curves.

Finally, model results were used to generate spatial predictions for νifor each grid-cell i using a 1 × 1 km grid. 
These predictions indicate the expected behavioral responses for whales traversing areas not necessarily visited 
during the tracking period. Predictive layers were generated for individual whales and averaged across individu-
als for depicting an overall pattern.

log(σ t) ∼ Normal(µ1,t , ε1)

µ1,t = A0+ AXt

log(βt) ∼ Normal(µ2,t , ε2)

µ2,t = B0+ BXt
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Integrating movement and species distribution models. Results from a previous SDM were used 
for assessing spatial overlap between blue whale distribution and marine traffic. Briefly, this model consisted 
of a Bayesian binomial N-mixture model used to model blue whale groups counts in line-transect data (2009, 
2012 and 2014), using distance sampling techniques and oceanographic covariate  data16. Using an 8 × 8 km grid 
spatial predictions of blue whale density at each grid-cell i  (Ni) were generated for eight years (2009–2016) and 
averaged into a single layer. To integrate outputs from movement models and SDM the relative probability of 
encountering a whale (RPEW) was calculated as follows

RPEWi assumes that the probability of encountering whales increases with predicted  density39,69. Here we 
consider behavior might also be part of this function as slow and less persistent movement (ARS) will result in 
more time spent (1/νi) allocated to each grid-cell i relative to all other grid cells n. As  Ni, had a spatial resolution 
of 8 × 8 km, we resampled the νi grid to match the coarser grid resolution prior to any calculation, using the 
mean of aggregated grid-cells.

Defining spatial overlap with marine traffic. A quantitative measure of risk associated to vessel traf-
fic can be considered as a monotonic function of the number of vessels and the probability of encountering a 
 whale39,70. As described above, the relative amount of time allocated to each grid-cell can be obtained from 1/νi. 
Therefore, as a measure of risk we calculated the relative probability of vessel encountering whale (RPVEW)39,69 
by combining  Ni, νi and  VDi as follows.

where Pwi = Ni∑n
i=1(Ni)

 corresponds to the probability of observing a whale within each grid-cell i relative to all 

other grid cells n, Pti =
1
νi∑n

i=1(
1
νi
)
 corresponds to the time allocated to each grid-cell i relative to all other grid 

cells n, and Pvi = VDi∑n
i=1 (VDi)

 corresponds to the observed number of vessels within grid-cell i relative to all other 
grid cells n. fleets. Finally, to generate quantitative estimates on the degree of overlap between blue whale distri-
bution and vessel traffic we used the Shoener’s D and Warren’s I similarity  statistics71. These statistics range from 
0, indicating no overlap, to 1, indicating distributions are identical. To use these statistics, the variables  Ni times 
1/νi and  VDi were rescaled to range between 0 and 1 and inputted to the nicheOverlap function from the R 
package dismo72,73. A schematic representation of our workflow can be found as a Supplementary Figure S5 
online.

Statement of approval. The tagging methods employed in this study were approved by the Institutional 
Animal Care and Use Committee of the National Marine Mammal Laboratory of the Alaska Fisheries Science 
Center, National Marine Fisheries Service, U.S. National Oceanic and Atmospheric Administration. All methods 
employed in this study were carried out in accordance with guidelines from Subsecretaría de Pesca y Acuicultura 
(SUBPESCA), which provided full authorization to undertake this research through resolution #2267 of the 
Chilean Ministry of Economy and Tourism.

Results
Tracking duration for instrumented whales while within the study area ranged from 8.1 to 105 days (mean = 52.03, 
sd = 29.3, median = 48.7), yielding tracks that ranged from 49 to 1,728 locations (mean = 460.27, sd = 582.36, 
median = 140) used for modelling (after filtering, Table 1). In general, whales tended to remain in very localized 
coastal areas, where high productivity occurs during each austral spring (Fig. 2). No instrumented individuals 
departed from NCP until the onset of austral autumn–winter months (April-July)14. Pearson correlation analyses 
showed that none of the used covariates were strongly correlated (r < 0.5, p < 0.01). Except for one instrumented 
whale (ID#12), all animals showed a significant positive correlation between σt and DAHCC, six animals showed 
a significant negative correlation between σt and thermal gradients (Table 1). These results imply a clear pattern 
of whales reducing their velocities near areas that were highly productive during spring each year and/or where 
higher thermal gradients occur. The relationship with SST was less clear as three individuals showed a significant 
negative correlation and five a significant positive one (Table 1). 

Regarding correlations between βt and environmental covariates, it was expected that whenever significant, 
they would present the opposite sign of those that were significant regarding σt, rendering a continuum between 
ARS and transit behavior. This was the case for three individuals with respect to DAHCC (ID#s1, 4 and 8), four 
individuals with respect to SST (ID#s 1, 4, 8 and 11) and one individual with respect to thermal gradients (ID#8, 
Table 1). Interestingly, two individuals showed the same signal in their correlation between DAHCC and βt, as 
well as, between DAHCC and σt (ID# 11 and 15). The same occurred for one individual regarding SST (ID#9) 
and one individual regarding thermal gradients (ID#13, Table 1).

Post hoc definition of behavioral states showed the expected occurrence of both transit and ARS behavior. 
However, it also showed the occurrence of intermediate behavioral states at locations associated with low speed 
and high persistence and vice versa (Fig. 2). These types of intermediate behaviors were more predominant in 
individuals tagged in 2016 and 2019.

RPEWi =
Ni

1
νi∑n

i=1(Ni
1
νi
)
.

RPVEWi =
PwiPtiPvi∑n

i=1 (PwiPtiPvi)
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Prediction curves for νt based on covariate variation provided unrealistic predictions for individuals for 
which a relatively small number of locations were available (< 200 locations, Fig. 3). For this reason, we only 
generated spatial predictions of νt (Fig. 4) for individuals having tracks with more than 200 locations (ID#s 5, 
7, 11, 12, 13, 14 and 15). Interindividual variation was observed regarding absolute values for νt, indicating that 
some whales moved, in general, faster and in a more persistent manner (Fig. 4 b,c,e) than others, and also in 
terms of where their lowest values (ARS behavior) were expected. Despite this individual variation, some areas 
were consistently depicted as having the lowest values for νt, which are highlighted when the spatial predictions 
for these seven whales were averaged into an overall mean (Fig. 4h). Spatial predictions on RPEW highlighted 
areas of aggregation for blue whales in NCP, mainly located in the western part of Chiloe Island, Ancud Gulf, 
Adventure Bay and northern Moraleda Channel (Fig. 5).  

VD absolute values were highest for the aquaculture fleet (range:0–78.4) followed by artisanal fishery (0–13.9), 
transport (range: 0–8) and industrial fishery (range: 0–1.9) fleets. The number of active vessels per day was high-
est for the aquaculture fleet (range: 602–729), followed by the artisanal fishery (range: 37–76), transport (range: 
6–57) and industrial fishery (range: 1–13) fleets. Although the four fleets studied here showed spatial variation 
on RPVEW, all of them coincided in a high probability of whales interacting with vessels throughout the Chiloe 
inner sea (Fig. 6). Among the four fleets studied the artisanal fishing fleet showed the highest overlap with blue 
whale distribution patterns (D = 0.34; I = 0.64). The industrial fishery (D = 0.28; I = 0.48), aquaculture (D = 0.24; 
I = 0.46) and transport (D = 0.23; I = 0.45) fleets showed similar lower overlap (Fig. 6).

Discussion
Blue whale habitat selection and priority areas for conservation. Understanding the environmen-
tal drivers of blue whale habitat  selection16,17 is paramount for defining priority areas for its conservation and 
developing recommendations for marine spatial  planning11,74. In pursuing this goal, our setting combined pre-
vious SDM fit to line-transect data with a movement model fit to telemetry data in a complementary manner. 
Telemetry data supports the spatial pertinence of previously defined areas for assessing blue whale abundance 
and distribution patterns through ship-borne surveys. Although, some whales performed brief excursions to 
adjacent offshore waters, they tended to remain within the NCP coastal areas during most of the tracking time, 
which in two cases extended for up to 3 months (Table 1). Potential caveats to this approach include tagging 
location bias (i.e. only performed in coastal waters, Fig. 1) and sampling size, which should be overcome through 
the ongoing tagging program.

Previous  SDM16 showed that spring productivity and, secondarily, thermal fronts were important covariates 
for predicting blue whale densities. Results here show that the same covariates selected by SDM are important for 
understanding blue whale’s movement patterns. As with the aforementioned SDM, DAHCC was the most preva-
lent covariate retained in our models, which combined with thermal gradients, displayed an unequivocal pattern 
in their correlation with σt. This is, whales tended to reduce their velocity near areas of high primary productivity 
that had occurred during austral spring and where strong thermal gradients take place (Table 1, Fig. 3a). As with 
many other large whale species, worldwide abundance and distribution patterns of blue whales have been linked 
to predictable highly and seasonally productive waters associated to high chlorophyll-a, among other proxies 
for enhanced  productivity19,20,24,75–78. Nevertheless, as blue whales feed almost exclusively on krill, temporal lags 
are expected to occur between seasonally high primary productivity, euphausiids early life-history stage pro-
cesses (e.g. larval recruitment), the peak in adult euphausiid densities and the peak in whale  abundance17,20,78. 
Refining our understanding of how temporal lags relate chlorophyll-a to euphausiid spatial patterns and then 
to blue whale distribution remains a pending  task79,80, especially considering that euphausiid spatial ecology in 
the NCP is poorly  understood49,81.

Although spring chlorophyll-a appears to be a suitable general proxy for blue whale prey availability in the 
NCP, whales are expected to respond in a much more complex manner to environmental heterogeneity. Previ-
ously, blue whale density in the NCP was found to be higher near areas of thermal front  recurrence16. By using 
telemetry data, we were able to refine the assessment scale and test whether blue whales responded to daily 
changes in thermal gradients. Despite the relatively coarse resolution of Argos data, we were able to find evidence 
for behavioral response in six whales while traversing thermal gradients of less than 1 °C (Fig. 3c). This may 
even represent an underestimation given the reported response of blue whales to gradients as low as 0.03 °C82. 
Thus, our results provide additional support on the relevance of coarse to meso-scale thermal gradients when 
shaping marine predator  distribution16,23,82,83. The underlying mechanism for this pattern, however, is not clear, 
as thermal fronts might be responsible for increasing prey availability by boosting local productivity and/or by 
aggregating prey  patches22–25,83,84. Within the NCP, both processes are likely to be tightly coupled. The influence 
of fresh waters rich in silicic acid, among other nutrients, from high river discharges due to glacier melt and 
heavy rain, fertilize the photic zone by mixing with macronutrient-loaded oceanic deep  water46,49,81,85,86. This 
large fresh water input in conjunction with higher irradiance reaching the surface during spring and summer, 
wind stress, tide and complex bottom topography promotes alternating processes of vertical and horizontal 
stratification/mixing of the water column, enhancing primary production as well as plankton  aggregation87–89. 
In this context, areas selected by blue whales in the NCP might not just be of high biological productivity, but 
where frontal dynamics lead to highly concentrated prey patches.

SST presented an equivocal pattern regarding blue whale movement patterns, suggesting a preference for 
colder waters in four individuals and the opposite in four other individuals (Table 1, Fig. 3b). This might be a 
temporal issue if whales in some years/seasons found their prey in colder/warmer waters. For instance, Ancud 
Gulf tends to present higher temperatures during spring and summer than the Corcovado Gulf as the latter rep-
resents the main entrance path for sub-superficial oceanic colder waters into the Chiloe inner sea. Alternatively, 
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the lack of a clear trend in observed blue whale movement patterns regarding SST might be the result of a prefer-
ence for intermediate temperatures that linear predictors failed to  detect76.

Blue whales appear to respond to dynamic water-column processes by performing continuous behavioral 
changes without necessarily departing from relatively discrete areas (e.g. Ancud Gulf and Moraleda Channel, 
Fig. 2). For instance, whales ID#11, ID#13 and ID#15 presented a higher probability of reducing their velocity 
nearby areas of high productivity and strong thermal gradients, a higher probability of increasing persistence 
nearby areas of high productivity (for whales ID#11 and ID#15, Table 1), and all three spent from one to 3 months 
within specific micro-basins (Ancud Gulf and Moraleda Channel). This suggests that both transit-like and ARS 
behaviors co-occur spatially, temporarily oscillating with the suitability of foraging conditions.

Higher blue whale densities observed in the same areas where tagged individuals presented ARS behavior in 
a previous  study16 could have been attributed to multiple individuals entering and leaving these areas. However, 
the results presented here show that instrumented blue whales concentrate in relatively discrete areas for extended 
periods of time (up to 3 months) searching for and exploiting available resources. The limited movement elicited 
by blue whales might be regarded as an indicator of low interspecific competition, considering that their popu-
lation abundance is still estimated to be considerably below pre-whaling  levels16,90,91. Other mechanisms like 
 dominance92 and predator  avoidance93, have been purported to explain limited animal movement. Thus, other 
factors should be considered in the future for understanding other dimensions of blue whales’ habitat selection 
process, as well as temporal variations on it.

Figure 2.  Behavioral variation for tagged whales. Panels (a–e) summarize results for 2004, 2013, 2015, 2016 and 
2019, respectively and panel f combines all tracks. Red to blue four-color ramp indicates the percentile to which 
each location belongs regarding variation in σt and 3/βt (persistence). By using the medians, the four possible 
combinations are presented as a posteriori behavioral state identification. Locations jointly holding values of 
σt and 3/βt below their medians across all whales (low s and low p) can be considered ARS behavior, while the 
opposite (high s and high p) can be considered transit. Blue (far) to yellow (close) color ramp in the background 
indicates variation in standardized distance to areas of high chlorophyll concentration (DAHCC) in log scale, 
which was the most consistent covariate shaping blue whale movement patterns in this study. Data layers 
(including maps) were created in R ver. 4.0.2 (www.r-proje ct.org) and ensembled in QGIS ver. 3.8.0 (www.qgis.
org) for final rendering. Maps were created using data on bedrock topography from the National Centers for 
Environmental Information (https ://maps.ngdc.noaa.gov/viewe rs/grid-extra ct/index .html). Values above 0 were 
considered land coverage.

http://www.r-project.org
http://www.qgis.org
http://www.qgis.org
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
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Figure 3.  Prediction curves indicate expected variation in long-term velocity (νt) in relation to environmental 
covariates, (a) distance to areas of high chlorophyll concentration (DAHCC) in log scale, (b) sea surface 
temperature (SST) and c) thermal gradients. Red lines indicate predictions for whales exhibiting more than 200 
locations (ID#s 5, 7, 11, 12, 13, 14 and 15) and black lines correspond to those with less locations available.

Figure 4.  Spatial predictions of expected long-term velocity (νt) responses in the entire study area, for every 
instrumented whale with more than 200 locations (panels a–g). The bottom right panel (h) shows the overall 
mean for all seven individuals. Data layers (including maps) were created in R ver. 4.0.2 (www.r-proje ct.org) 
and ensembled in QGIS ver. 3.8.0 (www.qgis.org) for final rendering. Maps were created using data on bedrock 
topography from the National Centers for Environmental Information (https ://maps.ngdc.noaa.gov/viewe rs/
grid-extra ct/index .html). Values above 0 were considered land coverage.

http://www.r-project.org
http://www.qgis.org
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
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Independently, both SDM and movement models predictions, highlighted similar areas of aggregation for 
blue whales in NCP based on observed oceanographic conditions (see Supplementary Fig. S5 online). These are 
clearly delimited by our RPEW map and considered Ancud Gulf, the Western coast of Chiloe Island, Corcovado 
Gulf / Moraleda Channel (CGMC), and Adventure Bay (Figs. 1 and 5). As previous SDMs were restricted to 
areas within 25 km from shore, some offshore areas visited by blue whales were not considered during RPEW 
computation. However, as the overall tendency to remain in coastal waters by instrumented whales was clear 
(Fig. 2f), we consider RPEW to be adequate.

Quantifying overlap with vessel traffic. For Chile, detailed and freely available vessel traffic data as 
those used here are limited to recent years (2019–2020), precluding long term assessments on vessel traffic 
spatiotemporal  variation95. Although limited to 10 months of data, results showed little intra-fleet variation for 
the transport and aquaculture vessel activities, as well as, for those occurring in the inner sea for both fishing 
fleets (see Supplementary Figs. S1–S4 online). This was expected as transport and logistic support operations 
from aquaculture operations are less variable than the shifting resource-tracking operations of fishing vessels. In 
addition, the inner waters concentrate obligated marine corridors for entering/leaving the area which are used 
similarly regardless of vessel type. Henceforth, our estimates are expected to adequately reflect general vessel 
traffic patterns for each fleet but inspecting possible temporal variation in these patterns should be pursued in 
the future.

The four different vessel fleets considered here elicited differences in VD values and their spatial use of the 
study area (Fig. 6). While artisanal and industrial fishing fleets utilize inner waters to the east and open waters 
to the west of the study area, aquaculture and transport fleets are mainly constrained to inner waters (Fig. 6). 
According to Chilean legislation, the artisanal fishing fleet is restricted to operate within 5 nm (9.3 km) from the 
coast in open and inner waters while the industrial fishing operations are to be performed beyond this area to the 
West. This might explain the artisanal fishing fleet´s high score on the similarity statistics, indicating the largest 
degree of overlap with blue whale coastal distribution. In other words, this fleet distributes the RPVEW more 

Figure 5.  Relative probability of encountering a blue whale (RPEW). This integrates the output of the 
movements and species distribution models for areas within 25 km from shore. Data layers (including the map) 
were created in R ver. 4.0.2 (www.r-proje ct.org) and ensembled in QGIS ver. 3.8.0 (www.qgis.org) for final 
rendering. Map was created using data on bedrock topography from the National Centers for Environmental 
Information (https ://maps.ngdc.noaa.gov/viewe rs/grid-extra ct/index .html). Values above 0 were considered 
land coverage.

http://www.r-project.org
http://www.qgis.org
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
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homogeneously matching blue whale distribution, while other fleets concentrate only at specific areas (lower 
degree of overlap). In comparison with results presented here, a study using the same overlap statistics, showed 
a higher degree of overlap between vessels and three species of cetaceans in the Mediterranean  Sea73. This was 
expected as the Mediterranean Sea is a high intensity vessel traffic  area96. However, most of the marine traffic 
recorded in that study (73.3%) corresponded to small sailing boats, suggesting low probabilities of lethal ship-
strikes in general but pinpointing that shipping routes (where larger vessels navigate) might pose higher risk. This 
brings forward the fact that spatial overlap is just one of the factors affecting collision risk and its outcome, with 
vessel density, speed and size also contributing to  it39,40,97. Although the industrial fishing fleet presents a lower 
degree of spatial overlap with blue whales and the lowest number of operating vessels, industrial vessels might 
yield a higher probability of lethal interactions if they occur, due to larger vessel size. This fleet also presented a 
particular pattern of high RPVEW values off Adventure Bay (Fig. 6).

With up to 729 active vessels operating per day (83% of the total) and up to 78 vessels per day crossing a 
single grid-cell (VD), aquaculture fleet corresponds to the largest and most densely distributed fleet in the NCP. 
Hence, while RPVEW predictions highlights the specific areas where interactions are more likely to occur for 
each vessel fleet, in absolute terms, it is possible that the aquaculture fleet represents the major driver of negative 
vessel-whale interactions in NCP.

When considering results from all fleets together it is clear that the inner waters largely concentrate higher 
VD and high RPVEW values for all fleets (Fig. 6). This area holds the largest number of human settlements 
in the NCP and the main port pertaining to the regional capital, Puerto Montt, raising concerns for potential 
collisions, behavioral disturbance and/or heavy noise  exposure38,94,98–101 for blue whales there. Although, no 
systematic monitoring or registering protocol exists in this region, local authorities’ statements and the local 
press have documented at least three large whale mortality events linked to vessel collisions in the NCP (two 

Figure 6.  Top panels show vessel density (VD) as the mean number of vessels visiting each 8 × 8 km grid-cell 
per day, for the industrial fishery (a), artisanal fishery (b), aquaculture (c) and transport (d) fleets. Note the 
large difference in color bar increments for the aquaculture fleet. Bottom panels show the relative probability 
of vessel encountering whale (RPVEW) for the industrial fishery (e), artisanal fishery (f), aquaculture (g) and 
transport (h) fleets. The data of the different fleets are provided by the Chilean national services of fisheries and 
aquaculture, (SERNAPESCA) and are freely available at www.serna pesca .cl. Data layers (including maps) were 
created in R ver. 4.0.2 (www.r-proje ct.org) and ensembled in QGIS ver. 3.8.0 (www.qgis.org) for final rendering. 
Maps were created using data on bedrock topography from the National Centers for Environmental Information 
(https ://maps.ngdc.noaa.gov/viewe rs/grid-extra ct/index .html). Values above 0 were considered land coverage.

https://www.sernapesca.cl
https://www.r-project.org
https://www.qgis.org
https://maps.ngdc.noaa.gov/viewers/grid-extract/index.html
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blue whales and one sei whale), with two occurring nearby Puerto Montt and the other one at CGMC (Fig. 5). 
The ability of blue whales to avoid approaching vessels appears to be limited to relatively slow descents/ascents, 
with no horizontal movements away from a  vessel102,103, therefore, collision events might pose significant threats 
to survival and  recovery97 for this endangered population. As inner waters of NCP might be considered, at the 
time, the spot of higher relative and absolute probabilities of negative interactions between blue whales and 
vessels, management actions are urgently needed to be implemented. For now, the most effective way to reduce 
collision risk is to keep whales and vessels apart, either in space or time, and where/when this is not possible, 
other measures (such as speed regulation) can be sought and applied singularly or in combination, considering 
variations in vessel activity and whale´s  distribution40,102,104, as data become available. In addition, it is important 
to acknowledge that all analyses performed here were restricted to vessels carrying transponders and legally 
mandated to submit position data. Therefore, several vessels types operating in the area that could contribute 
to collision risk (e.g. international cargo and tankers, cruiseliners, as well as artisanal, recreational and military 
vessels) are currently unaccounted for.

Because widely migratory species, such as the blue whale, do not recognize political boundaries, it is of great 
importance to identify the location of corridors and critical areas where they perform their vital activities (i.e., 
feed, migrate, breed, calve) to provide baseline information for their conservation. Efforts must be implemented 
at the local, national and international scales if success is to be reached, as ESP blue whale population recovery 
might be jeopardized by the loss of even a few individuals a  year16 after being severely depleted by the whaling 
industry during the 20th Century.

Modelling approach. One of the main differences between our modelling approach and previously pub-
lished SSMs is in that behavioral variation that arises from the dependence on time-varying parameters (σt and 
βt) rather than switches in discrete pre-determined behavioral  states30,31,65,107. While the latter approach allows 
formal prediction, testing on the spatio-temporal occurrence of known behavioral modes (e.g. areas where ARS 
is likely to occur), time-varying approaches permit investigating variation in movement patterns that cannot, or 
are not desired to be, categorized a  priori65,107,108. This poses a significant advantage in cases where animal move-
ment fails to conform to the usual transit/ARS binary view. For instance, a previous  work14 fitted a switching 
SSM to most of the data we analyzed here and found that transit states were very rare within the NCP. In agree-
ment with this, our results show that ca. 75% of all whale estimated locations presented persistence values lower 
than 1.6 h, which is consistent with the biological expectation of whales primarily engaged in foraging related 
activities within  NCP12. In this scenario, attempting to explore the effect of environmental variables on switching 
probability between ARS and transit  states76 would have been difficult, as very few locations and their associated 
covariates would have been available for the transit state. By exploring changes in movement parameters, we can 
assess how animals’ velocity and/or persistence respond to environmental covariates without the need of further 
assumptions. Following the transit/ARS rationale of conventional switching SSMs, one would expect that if a 
covariate is correlated with σt it also would be with βt, but with an opposite sign. That is, at certain covariate 
values an animal’s velocity and persistence are likely to decrease indicating ARS behavior, as was the case for 
several individuals and variables (Table 1). However, this does not need to always be the case, as shown by whales 
ID#11 and ID#15, which reduced their velocity near areas of high productivity in conjunction with increased 
persistence (Table 1). In general, this might occur because both transit and ARS behavior co-occur in similar 
areas with respect to DAHCC but differ in other variables (SST and thermal gradients). Nonetheless, alternative 
explanations for other behaviors, apart from transit/ARS, might arise. For instance, short-lived chasing bursts 
(escorting-like behavior) has been described for the  NCP109 , which are expected to present high velocities but 
not necessarily high persistence. On the other hand, slow persistent behavior, mostly present in whales tagged 
in years with the highest data transmission throughput (2016–2019, Fig. 2d–e, Table 1), might be explained by 
the ratio of the location error relative to the scale of movement. Thus, if short time periods separate two or more 
locations with limited movement, high persistence might arise from negligible variation in both speed and loca-
tion, as observation error increases disproportionately relative to the scale of the movement process.

Overall, our modelling approach accounted for observational error and allowed for the incorporation of 
environmental covariates to inform movement parameters without the need for regularization of location data 
into fixed time  intervals30,65, all in one single step. By fitting the model through the R package “TMB” analysis 
took an average of 60.5 s to run (range: 2.6–310.6, processor: Intel Core i7-7700HQ at 2.8 GHz, RAM: 32 GB) 
which is a significant advantage when processing large amounts of data.

Conclusions
Blue whale movement patterns agree with previous studies on their distribution, highlighting the importance 
of coastal waters and reinforcing our knowledge about primary production and thermal fronts as important 
environmental drivers for this species´ habitat selection process in the NCP. Considering defined priority areas 
for blue whale conservation in the area, those located at inner waters concentrated the highest probabilities of 
whales interacting with vessels. Among the studied vessel fleets, the unparalleled size of the aquaculture fleet 
indicates this could play a decisive role in modulating potential negative vessel-whale interactions within NCP. 
The results of this study clearly pinpoint specific areas where management actions are urgently needed, especially 
considering the undetermined number of vessels strikes and levels of noise exposure in the region. This infor-
mation should be considered by Governmental and International organizations to inform, design, and rapidly 
implement mitigation action using existing national and international conservation instruments.
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Data availability
C +  + /TMB code for fitting the model (CTCRW_matrix_cov.cpp), raw telemetry data and accompanying covari-
ate data are available as Supplementary Information.

Received: 26 August 2020; Accepted: 18 December 2020

References
 1. Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends in Ecol. Evol. 0 (2016).
 2. Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. PNAS 105, 19052–19059 (2008).
 3. Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in 

animal populations. Ecol. Lett. 20, 3–18 (2017).
 4. Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).
 5. Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 

(2015).
 6. Cooke, S. J. Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, 

and IUCN Red List threat assessments. Endanger. Species Res. 4, 165–185 (2008).
 7. Costa, D. P., Breed, G. A. & Robinson, P. W. New insights into pelagic migrations: implications for ecology and conservation. 

Annu. Rev. Ecol. Evol. Syst. 43, 73–96 (2012).
 8. Žydelis, R. et al. Dynamic habitat models: using telemetry data to project fisheries bycatch. Proc. R. Soc. Lond. B: Biol. Sci. 278, 

3191–3200 (2011).
 9. Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 

459–473 (2019).
 10. Cooke, J. IUCN Red List of Threatened Species: Blue Whale. IUCN Red List of Threatened Species. https ://www.iucnr edlis t.org/

en (2018).
 11. Hucke-Gaete, R., Moro, P. L. & Ruiz, J. Conservando el mar de Chiloé, Palena y las Guaitecas. Síntesis del estudio Investigación 

para el desarrollo de Área Marina Costera Protegida Chiloé, Palena y Guaitecas. Valdivia, Chile: Universidad Austral de Chile 
and Lucas Varga para The Natural Studio. Accessed June 30, 2014 (2010).

 12. Hucke-Gaete, R., Osman, L. P., Moreno, C. A., Findlay, K. P. & Ljungblad, D. K. Discovery of a blue whale feeding and nursing 
ground in southern Chile. Proc. R. Soc. Lond. B 271, S170–S173 (2004).

 13. Buchan, S. J., Stafford, K. M. & Hucke-Gaete, R. Seasonal occurrence of southeast Pacific blue whale songs in southern Chile 
and the eastern tropical Pacific. Mar. Mamm. Sci 31, 440–458 (2015).

 14. Hucke-Gaete, R. et al. From Chilean Patagonia to Galapagos, Ecuador: novel insights on blue whale migratory pathways along 
the Eastern South Pacific. PeerJ 6, e4695 (2018).

 15. Torres-Florez, J. P. et al. First documented migratory destination for eastern South Pacific blue whales. Mar. Mam. Sci. https ://
doi.org/10.1111/mms.12239  (2015).

 16. Bedriñana-Romano, L. et al. Integrating multiple data sources for assessing blue whale abundance and distribution in Chilean 
Northern Patagonia. Divers. Distrib. https ://doi.org/10.1111/ddi.12739  (2018).

 17. Buchan, S. J. & Quiones, R. A. First insights into the oceanographic characteristics of a blue whale feeding ground in northern 
Patagonia, Chile.  Mar. Ecol. Prog. Ser. 554, 183–199 (2016).

 18. Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern 
Ocean. Nature 432, 100–103 (2004).

 19. Branch, T. A. et al. Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern 
Hemisphere and northern Indian Ocean. Mam. Rev. 37, 116–175 (2007).

 20. Croll, D. A. et al. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).
 21. Zerbini, A. N. et al. Baleen whale abundance and distribution in relation to environmental variables and prey density in the 

Eastern Bering Sea. Deep Sea Res. Part II 134, 312–330 (2016).
 22. Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M. & Bava, J. Marine fronts at the continental shelves of austral South 

America: Physical and ecological processes. J. Mar. Syst. 44, 83–105 (2004).
 23. DoniolValcroze, T., Berteaux, D., Larouche, P. & Sears, R. Influence of thermal fronts on habitat selection by four rorqual whale 

species in the Gulf of St, Lawrence.  Mar. Ecol. Prog. Ser. 335, 207–216 (2007).
 24. Littaye, A., Gannier, A., Laran, S. & Wilson, J. P. F. The relationship between summer aggregation of fin whales and satellite-

derived environmental conditions in the northwestern Mediterranean Sea. Remote Sens. Environ. 90, 44–52 (2004).
 25. Lutjeharms, J. R. E., Walters, N. M. & Allanson, B. R. Oceanic frontal systems and biological enhancement. In Antarctic Nutrient 

Cycles and Food Webs 11–21 (Springer, Berlin, Heidelberg, 1985). doi:https ://doi.org/10.1007/978-3-642-82275 -9_3.
 26. Acevedo-Gutiérrez, A., Croll, D. A. & Tershy, B. R. High feeding costs limit dive time in the largest whales. J. Exp. Biol. 205, 

1747–1753 (2002).
 27. Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. 

Funct. Ecol. 29, 951–961 (2015).
 28. Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill 

density. J. Exp. Biol. 214, 131–146 (2011).
 29. Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Passive versus active engulfment: verdict from trajectory simulations of lunge-

feeding fin whales Balaenoptera physalus. J. R. Soc. Interface 6, 1005–1025 (2009).
 30. Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state–space modeling of animal movement data. Ecology 86, 2874–2880 

(2005).
 31. Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E. & Fryxell, J. M. Extracting more out of relocation data: building move-

ment models as mixtures of random walks. Ecology 85, 2436–2445 (2004).
 32. Waerebeek, K. V. et al. Vessel collisions with small cetaceans worldwide and with large whales in the Southern Hemisphere, an 

initial assessment. Latin Am. J. Aquat. Mamm. 6, 43–69 (2007).
 33. Buschmann, A. H. et al. A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. 

ICES J. Mar. Sci. 63, 1338–1345 (2006).
 34. Niklitschek, E. J., Soto, D., Lafon, A., Molinet, C. & Toledo, P. Southward expansion of the Chilean salmon industry in the 

Patagonian Fjords: main environmental challenges. Rev. Aquac. 5, 172–195 (2013).
 35. Viddi, F. A., Harcourt, R. G. & Hucke-Gaete, R. Identifying key habitats for the conservation of Chilean dolphins in the fjords 

of southern Chile. Aquat. Conserv: Mar. Freshw. Ecosyst.  https ://doi.org/10.1002/aqc.2553 (2015).
 36. Hoyt, E. & Iñiguez, M. Estado del avistamiento de cetáceos en América Latina. WDCS, Chippenham, UK 60 (2008).
 37. Colpaert, W., Briones, R. L., Chiang, G. & Sayigh, L. Blue whales of the Chiloé-Corcovado region, Chile: potential for anthro-

pogenic noise impacts. Proc. Mtgs. Acoust. 27, 040009 (2016).

https://www.iucnredlist.org/en
https://www.iucnredlist.org/en
https://doi.org/10.1111/mms.12239
https://doi.org/10.1111/mms.12239
https://doi.org/10.1111/ddi.12739
https://doi.org/10.1007/978-3-642-82275-9_3
https://doi.org/10.1002/aqc.2553


14

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2709  | https://doi.org/10.1038/s41598-021-82220-5

www.nature.com/scientificreports/

 38. Lesage, V., Omrane, A., Doniol-Valcroze, T. & Mosnier, A. Increased proximity of vessels reduces feeding opportunities of blue 
whales in the St. Lawrence Estuary, Canada. Endanger. Species Res. 32, 351–361 (2017).

 39. Nichol, L. M., Wright, B. M., O’Hara, P. & Ford, J. K. B. Risk of lethal vessel strikes to humpback and fin whales off the west coast 
of Vancouver Island, Canada.  Endanger. Species Res. 32, 373–390 (2017).

 40. Vanderlaan, A. S. M. & Taggart, C. T. Vessel collisions with whales: the probability of lethal injury based on vessel speed. Mar. 
Mamm. Sci. 23, 144–156 (2007).

 41. Schoeman, R. P., Patterson-Abrolat, C. & Plön, S. A global review of vessel collisions with marine animals. Front. Mar. Sci. 7, 
292 (2020).

 42. Guzman, H. M., Gomez, C. G., Guevara, C. A. & Kleivane, L. Potential vessel collisions with Southern Hemisphere humpback 
whales wintering off Pacific Panama. Mar. Mamm. Sci. 29, 629–642 (2013).

 43. Schick, R. S. et al. Striking the right balance in right whale conservation. Can. J. Fish. Aquat. Sci. 66, 1399–1403 (2009).
 44. Guzman, H. M., Capella, J. J., Valladares, C., Gibbons, J. & Condit, R. Humpback whale movements in a narrow and heavily-used 

shipping passage, Chile.  Mar. Policy 118, 103990 (2020).
 45. Viddi, F. A., Hucke-Gaete, R., Torres-Florez, J. P. & Ribeiro, S. Spatial and seasonal variability in cetacean distribution in the 

fjords of northern Patagonia, Chile.  ICES J. Mar. Sci. https ://doi.org/10.1093/icesj ms/fsp28 8 (2010).
 46. Iriarte, J. L., León-Muñoz, J., Marcé, R., Clément, A. & Lara, C. Influence of seasonal freshwater streamflow regimes on phyto-

plankton blooms in a Patagonian fjord. NZ J. Mar. Freshw. Res. 51, 304–315 (2017).
 47. Iriarte, J. L., Pantoja, S. & Daneri, G. Oceanographic processes in Chilean Fjords of Patagonia: from small to large-scale studies. 

Prog. Oceanogr. 129, 1–7 (2014).
 48. Iriarte, J. L., González, H. E. & Nahuelhual, L. Patagonian Fjord ecosystems in Southern Chile as a highly vulnerable region: 

problems and needs. AMBIO: J. Hum. Environ. 39, 463–466 (2010).
 49. González, H. E. et al. Seasonal plankton variability in Chilean Patagonia fjords: carbon flow through the pelagic food web of 

Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Cont. Shelf Res. 31, 225–243 (2011).
 50. Pavés, H. J., González, H. E., Castro, L. & Iriarte, J. L. Carbon flows through the pelagic sub-food web in two basins of the Chilean 

Patagonian coastal ecosystem: the significance of coastal-ocean connection on ecosystem parameters. Estuar. Coasts 38, 179–191 
(2015).

 51. Paves, H. J. & Schlatter, R. P. Research article breeding season of the southern fur seal, Arctocephalus australis at Guafo Island, 
southern Chile. Revista Chilena de Historia Natural 81, 137–149 (2008).

 52. Reyes-Arriagada, R., Campos-Ellwanger, P., Schlatter, R. P. & Baduini, C. Sooty Shearwater (Puffinus griseus) on Guafo Island: 
the largest seabird colony in the world?. Biodivers. Conserv. 16, 913–930 (2007).

 53. Shaffer, S. A. et al. Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. PNAS 103, 
12799–12802 (2006).

 54. Wakefield, E. D. et al. Habitat preference, accessibility, and competition limit the global distribution of breeding black-browed 
albatrosses. Ecol. Monogr. 81, 141–167 (2011).

 55. Outeiro, L. & Villasante, S. Linking Salmon aquaculture synergies and trade-offs on ecosystem services to human wellbeing 
constituents. Ambio 42, 1022–1036 (2013).

 56. Heide-Jørgensen, M. P., Kleivane, L. & ØIen, N., Laidre, K. L. & Jensen, M. V. ,. A new technique for deploying Sa℡lite trans-
mitters on baleen whales: tracking a blue whale (balaenoptera Musculus) in the North Atlantic. Mar. Mamm. Sci. 17, 949–954 
(2001).

 57. Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. 
Mamm. Sci. 24, 315–325 (2008).

 58. Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from ‘ERDDAP’ Web Services (2020).
 59. Chin, T. M., Milliff, R. F. & Large, W. G. Basin-scale, high-Wavenumber Sea surface wind fields from a multiresolution analysis 

of scatterometer data. J. Atmos. Oceanic Technol. 15, 741–763 (1998).
 60. Lau-Medrano, W. grec: Gradient-Based Recognition of Spatial Patterns in Environmental Data (2020).
 61. Belkin, I. M. & O’Reilly, J. E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 78, 

319–326 (2009).
 62. Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry 

data. Ecology 89, 1208–1215 (2008).
 63. Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. State–space models of individual animal movement. 

Trends Ecol. Evol. 23, 87–94 (2008).
 64. Auger-Méthé, M. et al. Spatiotemporal modelling of marine movement data using Template Model Builder (TMB). Mar. Ecol. 

Prog. Ser. 565, 237–249 (2017).
 65. Jonsen, I. D. et al. Movement responses to environment: fast inference of variation among southern elephant seals with a mixed 

effects model. Ecology 100, e02566 (2019).
 66. Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: Automatic Differentiation and Laplace Approximation. J. 

Stat. Softw. 70, 1–21 (2016).
 67. McClintock, B. T., London, J. M., Cameron, M. F. & Boveng, P. L. Modelling animal movement using the Argos satellite telemetry 

location error ellipse. Methods Ecol. Evol. 6, 266–277 (2015).
 68. Michelot, T. & Blackwell, P. G. State-switching continuous-time correlated random walks. Methods Ecol. Evol. 10, 637–649 

(2019).
 69. Vanderlaan, A. S. M., Taggart, C. T., Serdynska, A. R., Kenney, R. D. & Brown, M. W. Reducing the risk of lethal encounters: 

vessels and right whales in the Bay of Fundy and on the Scotian Shelf. Endanger. Species Res. 4, 283–297 (2008).
 70. Fonnesbeck, C. J., Garrison, L. P., Ward-Geiger, L. I. & Baumstark, R. D. Bayesian hierarchichal model for evaluating the risk of 

vessel strikes on North Atlantic right whales in the SE United States. Endanger. Species Res. 6, 87–94 (2008).
 71. Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche 

evolution. Evolution 62, 2868–2883 (2008).
 72. Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).
 73. Pennino, M. G. et al. A spatially explicit risk assessment approach: Cetaceans and marine traffic in the Pelagos Sanctuary (Medi-

terranean Sea). PLoS ONE 12, e0179686 (2017).
 74. Outeiro, L. et al. Using ecosystem services mapping for marine spatial planning in southern Chile under scenario assessment. 

Ecosyst. Serv. 16, 341–353 (2015).
 75. Gill, P. C. et al. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. 

Mar. Ecol. Prog. Ser. 421, 243–263 (2011).
 76. Palacios, D. M. et al. Ecological correlates of blue whale movement behavior and its predictability in the California current 

ecosystem during the summer-fall feeding season. Mov. Ecol. 7, 26 (2019).
 77. Redfern, J. V. et al. Predicting cetacean distributions in data-poor marine ecosystems. Divers. Distrib. 23, 394–408 (2017).
 78. Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the Azores in rela-

tion to the North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279 (2011).

https://doi.org/10.1093/icesjms/fsp288


15

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2709  | https://doi.org/10.1038/s41598-021-82220-5

www.nature.com/scientificreports/

 79. Barlow, D. R., Bernard, K. S., Escobar-Flores, P., Palacios, D. M. & Torres, L. G. Links in the trophic chain: modeling functional 
relationships between in situ oceanography, krill, and blue whale distribution under different oceanographic regimes. Mar. Ecol. 
Prog. Ser. 642, 207–225 (2020).

 80. Rockwood, R. C., Elliott, M. L., Saenz, B., Nur, N. & Jahncke, J. Modeling predator and prey hotspots: management implications 
of baleen whale co-occurrence with krill in Central California. PLoS ONE 15, e0235603 (2020).

 81. He, G. et al. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé northern Patagonia 
Chile. Mar. Ecol. Prog. Ser. 10, 15–20. https ://doi.org/10.3354/meps0 8360 (2014).

 82. Etnoyer, P. et al. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California 
Peninsula, Mexico. Deep Sea Res. Part II 53, 340–358 (2006).

 83. Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway.  J. Mar. Syst.  
129, 452–471 (2014).

 84. Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 
363–376 (2009).

 85. Silva, N., Calvete, C. & Sievers, H. Masas de agua y circulación general para algunos canales australes entre Puerto Montt y 
Laguna San Rafael, Chile (Crucero Cimar-Fiordo 1). Cienc. Tecnol. Mar 21, 17–48 (1998).

 86. Silva, N. & Guzmán, D. Condiciones oceanográficas físicas y químicas, entre boca del Guafo y fiordo Aysén (Crucero Cimar 7 
Fiordos). Ciencia y Tecnología del Mar 29, 25–44 (2006).

 87. Molinet, C. et al. Effects of sill processes on the distribution of epineustonic competent larvae in a stratified system of Southern 
Chile. Mar. Ecol. Prog. Ser. 324, 95–104 (2006).

 88. Montero, P. et al. Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the 
transfer of carbon within pelagic food webs. Cont. Shelf Res. 31, 202–215 (2011).

 89. Tello G., A. & Rodríguez Benito, C. Characterization of mesoscale spatio-temporal patterns and variability of remotely sensed 
Chl a and SST in the Interior Sea of Chiloe (41.4–43.5° S). International Journal of Remote Sensing http://repos itori odigi tal.uct.
cl/handl e/10925 /652 (2012).

 90. Galletti-Vernazzani, B., Jackson, J. A., Cabrera, E., Carlson, C. A. & Brownell Jr., R. L. Estimates of abundance and trend of 
Chilean Blue Whales off Isla de Chiloé, Chile. PLoS ONE 12, e0168646 (2017).

 91. Williams, R. et al. Chilean blue whales as a case study to illustrate methods to estimate abundance and evaluate conservation 
status of rare species. Conserv. Biol. 25, 526–535 (2011).

 92. Nakano, S. Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial 
red-spotted Masu Salmon in A NATURAL HABITAT. J. Anim. Ecol. 64, 75–84 (1995).

 93. Jorgensen, S. J. et al. Limited movement in blue rockfish Sebastes mystinus: internal structure of home range. Mar. Ecol. Prog. 
Ser. 327, 157–170 (2006).

 94. Williams, R., Trites, A. W. & Bain, D. E. Behavioural responses of killer whales (Orcinus orca) to whale-watching boats: oppor-
tunistic observations and experimental approaches. J. Zool. 256, 255–270 (2002).

 95. Lammers, M., Pack, A., Lyman, E. & Espiritu, L. Trends in collisions between vessels and North Pacific humpback whales 
(Megaptera novaeangliae) in Hawaiian waters (1975–2011). J. Cetacean Res. Manag. 13, 73–80 (2013).

 96. Panigada, S. et al. Mediterranean fin whales at risk from fatal ship strikes. Mar. Pollut. Bull. 52, 1287–1298 (2006).
 97. Rockwood, R. C., Calambokidis, J. & Jahncke, J. High mortality of blue, humpback and fin whales from modeling of vessel col-

lisions on the U.S. West Coast suggests population impacts and insufficient protection. PLoS ONE 12, e0183052 (2017).
 98. Lusseau, D., Bain, D. E., Williams, R. & Smith, J. C. Vessel traffic disrupts the foraging behavior of southern resident killer whales 

Orcinus orca. Endanger. Species Res. 6, 211–221 (2009).
 99. Ribeiro, S., Viddi, F. A. & Freitas, T. R. Behavioural responses of Chilean dolphins (Cephalorhynchus eutropia) to boats in Yaldad 

Bay, southern Chile. Aquat. Mamm. 31, 234 (2005).
 100. Van Parijs, S. M. & Corkeron, P. J. Boat traffic affects the acoustic behaviour of Pacific humpback dolphins, Sousa chinensis. 

Mar. Biol. Assoc. U.K J. Mar. Biol. Assoc. U.K. 81, 533 (2001).
 101. Berman-Kowalewski, M. et al. Association between blue whale (Balaenoptera musculus) mortality and ship strikes along the 

California coast. Aquat. Mamm. 36, 59–66 (2010).
 102. McKenna, M. F., Calambokidis, J., Oleson, E. M., Laist, D. W. & Goldbogen, J. A. Simultaneous tracking of blue whales and large 

ships demonstrates limited behavioral responses for avoiding collision. Endanger. Species Res. 27, 219–232 (2015).
 103. Szesciorka, A. R. et al. A case study of a near vessel strike of a blue whale: perceptual cues and fine-scale aspects of behavioral 

avoidance. Front. Mar. Sci. 6, 761 (2019).
 104. van der Hoop, J. M. et al. Vessel strikes to large whales before and after the 2008 ship strike rule. Conserv. Lett. 8, 24–32 (2015).
 105. Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based 

on dive and movement data from medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).
 106. Iorio, L. D. & Clark, C. W. Exposure to seismic survey alters blue whale acoustic communication. Biol. Lett. 6, 51–54 (2010).
 107. Breed, G. A., Costa, D. P., Jonsen, I. D., Robinson, P. W. & Mills-Flemming, J. State-space methods for more completely capturing 

behavioral dynamics from animal tracks. Ecol. Model. 235–236, 49–58 (2012).
 108. Gurarie, E., Andrews, R. D. & Laidre, K. L. A novel method for identifying behavioural changes in animal movement data. Ecol. 

Lett. 12, 395–408 (2009).
 109. Schall, E. et al. Visual and passive acoustic observations of blue whale trios from two distinct populations. Mar. Mamm. Sci. 36, 

365–374 (2020).

Acknowledgements
We are grateful to L/M Noctiluca crew, M. Novy, J. Barros, R. Contreras, N. Subercaseaux and R. Westcott whose 
commitment made this research possible. LBR held a doctoral CONICYT-Chile fellowship. This research was 
funded by the Whitley Fund for Nature, Kilverstone Wildlife Charitable Trust, Agencia de sustentabilidad y 
cambio climático, and WWF Germany to RHG. Also, The US Office of Naval Research, donors to the Marine 
Mammal Institute at Oregon State University, BM.

Author contributions
L.B., R.H. and F.A.V. conceived the idea. L.B., D.J. and J.M. analyzed the data. R.H., D.M.P., F.A.V., B.M., and 
A.N.Z. provided the data and/or coordinated field campaigns. All authors participated in manuscript writing.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.

https://doi.org/10.3354/meps08360
http://repositoriodigital.uct.cl/handle/10925/652
http://repositoriodigital.uct.cl/handle/10925/652
https://doi.org/10.1038/s41598-021-82220-5


16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2709  | https://doi.org/10.1038/s41598-021-82220-5

www.nature.com/scientificreports/

org/10.1038/s4159 8-021-82220 -5.

Correspondence and requests for materials should be addressed to L.B.-R. or R.H.-G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-82220-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model
	Methods
	Study area. 
	Tagging and telemetry data. 
	Oceanographic covariates. 
	Vessel traffic data. 
	Modeling approach. 
	Integrating movement and species distribution models. 
	Defining spatial overlap with marine traffic. 
	Statement of approval. 

	Results
	Discussion
	Blue whale habitat selection and priority areas for conservation. 
	Quantifying overlap with vessel traffic. 
	Modelling approach. 

	Conclusions
	References
	Acknowledgements


